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Abstract—The design of test is a crucial step in the field
of software testing. The quality of test significantly impacts
the effectiveness of software testing, with well-designed test
cases improving the efficiency of bug detection. However,
manual test case design and writing are often considered time-
consuming and labor-intensive.

With the emergence of large language models (LLMs), es-
pecially ChatGPT, the potential of LLMs in the field of test
generation has become evident. Pre-trained LLMs can learn
and understand code in various programming languages and
design test cases using multiple testing frameworks.

In this paper, we used ChatGPT to generate tests for some
tested projects. Through experiments, we found that ChatGPT
has some gaps compared to traditional test generation tools,
but its performance is closer to manual testing. However,
the tests generated by ChatGPT exhibit higher readability.
We believe that ChatGPT is better suited to serve as a
manual testing assistant, helping understand the tested code
and providing testing ideas.

Keywords—Test Generation;, LLM; ChatGPT

1. INTRODUCTION

Unit testing holds an extremely crucial position in software
testing. During the software development process, as soon as
the code is designed and written, unit testing can be used to test
each simple or complex method and observe its detailed input
and output data. Therefore, unit testing is a fundamental testing
method that can be performed in the software development
stage, and it is a method that helps verify the correctness of
software unit functionality [1].

In unit testing, there are certain metrics used to assess the
adequacy of unit tests, such as code coverage [2]. However,
for manual testing, meeting these testing metrics can be a very
time-consuming and labor-intensive task. This is a reason why
testing professionals or developers may not enjoy unit testing
work. Therefore, tools for automating the generation of unit
tests are an important area of research in the field of unit
testing.

To improve the efficiency of unit testing, several automated
testing frameworks have been developed. For example, in
the Java domain, JUnit [3] is widely used to help testing
professionals easily write test cases. Testers utilize the APIs
provided by JUnit to quickly create test cases, and JUnit can
automatically assist in checking the correctness of the test
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cases. On the other hand, automated testing tools can generate
unit tests using unit testing frameworks, such as Evosuite [4]
and Sushi [5]. This eliminates the need for testers to manually
write test code, as these tools can achieve most of the unit
testing criteria automatically.

The emergence of large language models, such as ChatGPT,
has shown their potential in various domains [6], [7]. ChatGPT
is known for its strong language understanding and text-
processing capabilities. It can automatically generate code that
meets specific functional requirements based on human input
[8]. This has piqued the interest of researchers in the field of
software engineering [9]. The question is whether ChatGPT
can automatically generate test cases when provided with code
to be tested, meeting the specified requirements.

In this paper, we explore the ability of ChatGPT to automati-
cally generate tests in the field of unit testing. After generating
tests using ChatGPT, we compare them with those generated
by the commonly used testing tool, Evosuite. Additionally,
as ChatGPT is believed to be able to replace human effort in
various aspects, we are curious to see how ChatGPT compares
to manual testing. Therefore, we compare the tests generated
by ChatGPT with data from manual testing.

2. RELATED WORK AND BACKGROUND
2.1 Traditional Test Generation Methods

2.1.1 Test Generation Methods Based on Genetic Algorithms
and Evolutionary Algorithms

In the context of software testing, the utilization of genetic
algorithms (GAs) and evolutionary algorithms (EAs) for test
case generation has garnered significant attention [10]-[12].
Genetic algorithms, inspired by the principles of natural se-
lection and genetics, are employed to evolve a population of
potential test cases over multiple generations. Variants of GAs,
such as multi-objective genetic algorithms and co-evolutionary
algorithms, have been adapted to address specific challenges in
test case generation [11]. Evolutionary algorithms, a broader
class that includes genetic algorithms, encompass techniques
like genetic programming and differential evolution. These
algorithms have been applied to test case generation in sce-
narios where the search space is large or nonlinear, as is often
the case in software systems [13]. However, it’s important to
note that while these algorithms can efficiently explore the
solution space, they may also suffer from convergence issues
and difficulties in balancing exploration and exploitation.



2.1.2 Coverage-Based Test Generation Methods

Coverage-based test generation methods focus on achieving
specific coverage criteria during the testing process. These
criteria include statement coverage, branch coverage, path
coverage, and more, which guide the creation of test cases that
exercise various parts of the codebase [14]. Such methods aim
to ensure that all possible execution paths are traversed and
critical scenarios are adequately tested.

Consider the scenario of testing a compiler for a new pro-
gramming language. To achieve branch coverage, where every
possible decision point in the code is evaluated, a coverage-
based test generation method could systematically create test
cases that explore different paths through the compiler’s code.
This might involve generating inputs that trigger different
branches, loops, and conditional statements, ensuring that the
compiler’s behavior is thoroughly assessed.

One limitation of coverage-based methods lies in their inability
to guarantee the detection of all defects, as they focus primarily
on code coverage metrics rather than targeting specific func-
tional behaviors. Additionally, these methods might struggle
with complex control flows and nested conditions, potentially
leading to incomplete coverage despite considerable testing
efforts.

In summary, traditional test generation methods based on
genetic algorithms and coverage criteria have offered valu-
able contributions to the field of software testing. However,
researchers continue to explore ways to enhance their effec-
tiveness, address their limitations, and incorporate them into
comprehensive testing strategies.

2.1.3 Model-Driven Test Generation Methods

Model-driven approaches in test case generation have gained
prominence due to their ability to leverage abstract represen-
tations of software systems to guide testing efforts. These
methods harness the power of models to systematically gen-
erate test cases that explore various aspects of the system’s
behavior. They involve constructing models that capture the
software’s structure, behavior, and interactions, which are then
transformed into executable test cases [15].

Moreover, various model-driven testing tools have been de-
veloped to streamline this process. Tools like Spec Explorer
[16] and UML-based testing tools [17] provide graphical
interfaces for designing models and generating corresponding
test cases. These tools enable testers to focus on the abstract
representation of the system and its intended behavior, while
the tool takes care of converting these representations into
executable test scripts.

2.1.4 Test Generation Methods Based on Symbolic and Con-
colic Executions

Symbolic and concolic executions have emerged as powerful
techniques for test case generation. Symbolic execution in-
volves analyzing a program’s code paths symbolically, using
variables and expressions instead of concrete values [18].
Concolic execution combines both concrete and symbolic
execution to explore paths through the program’s codebase
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systematically [19]. In the domain of symbolic and concolic
executions, symbolic execution explores all possible paths that
conditions in the code can take based on symbolic inputs.
Concolic execution enhances this process by incorporating
actual concrete values from the execution environment, allow-
ing for precise analysis of complex control flows and con-
straints. These techniques offer advantages such as automated
constraint solving and the generation of diverse test inputs.
Researchers have developed various tools and frameworks,
such as SAGE [20] and KLEE [21], to facilitate symbolic and
concolic execution for test case generation. However, these
methods also come with challenges. They can suffer from
path explosion, where the number of possible execution paths
becomes unmanageably large [18]. Furthermore, complex data
structures, non-linear operations, and interactions with external
resources can complicate symbolic and concolic execution,
limiting their applicability in certain scenarios.

2.1.5 Model-Based Test Generation Methods

Model-based test generation methods rely on abstract rep-
resentations of systems, such as state machines or formal
models, to guide test case creation. These methods involve
creating models that capture the intended behavior of the
software, and then systematically deriving test cases from
these models [22]. For instance, consider the validation of a
communication protocol used in distributed systems. A model-
based approach might involve constructing a formal model
that depicts the interactions between different components of
the system. Test cases can then be generated by exploring the
model’s transitions and interactions, ensuring that the protocol
functions correctly under various scenarios [23]. Tools like
Spec Explorer [16] and Alloy Analyzer [24] provide support
for model-based testing by enabling the design and analysis of
system models. These tools aid in automatically generating test
cases that cover different scenarios and interactions, helping
to uncover potential defects and vulnerabilities.

2.2 Al Methods in Test Generation

The integration of machine learning techniques into test case
generation has emerged as a promising avenue of research
[25]. This subsection delves into the current state of generating
test cases using machine learning models. It explores the
methodologies employed to create datasets for training and
the techniques used for feature engineering. Additionally,
the application of common machine learning algorithms in
test case generation is discussed, highlighting their role in
automating the test case creation process.

2.2.1 Application of Natural Language Processing (NLP) in
Test Generation

The application of natural language processing (NLP) tech-
niques to test generation introduces innovative ways to en-
hance the testing process. This part investigates the poten-
tial advantages of utilizing NLP in software testing. It then
delves into the ways NLP can be employed in test generation
or software testing, possibly exploring the incorporation of



pretrained NLP models [26]. For instance, the integration
of NLP techniques could aid in the automatic extraction
of requirements from textual specifications and user stories,
subsequently facilitating the generation of test cases that
accurately cover these requirements. Additionally, pretrained
NLP models like BERT [27] or GPT-3 [28] could be fine-
tuned to comprehend domain-specific jargon and generate test
cases from natural language descriptions of software features.

2.2.2 Application of Large Language Models (LLMs) in Test
Generation

Large language models (LLMs) represent a significant ad-
vancement in Al capabilities, offering improvements over
previous Al and NLP models. Large language models offer
the possibility of replacing human efforts in the field of
software engineering, such as in code generation and code
repair [29], [30]. This subsection explores the advantages of
LLMs compared to their predecessors. It then explores the
potential applications of LLMs in test generation within the
realm of software testing, either through existing research
or future possibilities. LLMs could revolutionize test case
generation by understanding complex software requirements,
specifications, and functional descriptions. By interacting with
LLMs, testers could describe desired test scenarios in natural
language and receive automatically generated test cases as
output. Furthermore, LLMs might aid in generating edge cases
and uncovering corner-case defects that might be missed by
traditional test generation methods.

3. APPROACH

As mentioned above, our goal is to assess ChatGPT’s ability
to produce unit test cases. In this section, an approach is
designed to measure ChatGPT’s ability to generate unit test
cases, comparing it with both baseline models and human
beings.

For the GPT model, we have taken the GPT-3.5-turbo model as
the object of study. During the study, the model is considered
as an intelligent test generation tool that generates test cases
for the project under test and then compares it with traditional
testing tools and manual labor.

In this process, we first collected some Java projects of data
structures or algorithms as the tested projects. Afterwards, we
use the prompt to prompt the GPT model, and then input the
code of the project under test to GPT to let GPT generate
test cases. We will collect all test cases generated by GPT
for statistical analysis. At the same time, we also use the
baseline tool to generate test cases for the project under test
and perform statistical analysis on the generated test cases.

3.1 Project Collection

We use some data structure and algorithm related Java projects
as the projects under test. As mentioned before, in this paper,
we would like to evaluate the test generation capability of
ChatGPT by comparing it with human beings, so we need
to have enough human samples for comparison. At the same
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time, we require that the items chosen to be tested should be
able to guarantee quality and not be too simple.

For the above purposes, we used these items from the compe-
tition items of the National Student Software Testing Contest
in China. The National Student Content of Software Testing is
a software testing competition for college students organized
by MoocTest. The competition is attended by students from
colleges and universities across China every year and consists
of several competitions, such as developer testing, web testing,
and embedded software testing. The developer tests are con-
ducted in the form of unit tests, and the purpose of this thesis is
to evaluate the ability of ChatGPT to generate tests in the form
of unit tests, so the test items used in the developer tests of
the competition are very much in line with our requirements.
The test items are all from highly rated open-source projects
and are mainly concerned with data structures and algorithms.
In addition, since the competition consists of three stages:
selection, review, and final, the level gap of the participants
in each stage is different. In order to minimize the gap in the
level of manually designed test cases, we chose the test items
of the final round as the items under test for the study.

For the selected test projects, we separately collect their met-
rics, including the number of statements (/Nos), the number
of branches (NoB), cyclomatic complexity (C'C), and the
number of mutants (NoM).

e« Number of Statements (NoS) is the number of executable
statements of the code, i.e., the number of executable
statements of the code used in the calculation of statement
coverage in the structure-based test metrics.

Number of Branches (NoB) is the number of branches in
the code under test and is an important criteria in software
testing. In general, there are three structures in the code
that can be considered as code branching: 1) conditional
transfer of control from any node to any other node in a
control flow model; 2) explicit and unconditional transfer of
control from any node to any other node in a control flow
model; 3 ) transfer of control to the entry point of a test
item when the test item has multiple entry points. In most
software testing processes, only the first case is considered,
i.e., branches generated by if or switch statements in the
code.

Cyclomatic Complexity (CC), also known as Conditional
Complexity, is a measure of code complexity and is sym-
bolized by V(G). Cyclomatic Complexity is often used as a
measure of the complexity of a module’s decision structure,
quantified in terms of the number of independent paths, and
can also be interpreted as the minimum number of test cases
used to cover all possible scenarios.

Mutation Testing (sometimes called “mutation analysis”) is
a software testing methodology that improves the source
code of a program in detail. These so-called mutations
are based on well-defined mutation operations that simulate
typical application errors that can occur during code writing,
such as using the wrong operator or variable name. Code
segments with mutation operations are called mutants. A
mutant will be called a killed mutant if it is detected by
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Figure 1. The workflow of generating test cases with ChatGPT and evaluating progress.

a test case, or lived if all the test cases do not detect this
mutant.

In this paper, we use Jacoco [31] to count the number of
statements, branches, and circle complexity for each project
under test. JaCoCo is a Java code coverage library that uses
a series of counters to compute the code structure coverage
criteria, which include statement coverage, branch coverage,
and circle complexity. All of these counters are derived from
information contained in Java class files, which is essentially
debugging information optionally embedded in Java bytecode
instructions and class files. For counting the number of mu-
tants, a widely used Java mutation testing tool, PIT [32], is
used. Pitest automates the generation of mutants for the project
under test, then automatically executes all the test cases and
finally calculates the percentage of killed mutants, i.e., the
mutation score.

3.2 Test Generation

The purpose of test generation is to generate tests for the
project under test using ChatGPT under specified conditions.
Since ChatGPT is believed to have the ability to understand the
code, we tried to observe the ability of ChatGPT to generate
tests using a simpler prompt and a more detailed prompt under
guidance. We performed tests at different levels of granularity,
i.e., using ChatGPT to generate tests for the class in the project
under test and for each method in the class, respectively, within
a specified time frame.

The process of test generation is shown in Algorithm 1, where

75

we first initialize the set of test cases 7'S for the project under
test, and initialize the variables Cov and M .S, which are used
to record the branch coverage and mutation score of 7S after
each update, respectively. Initialize N, which is used to record
the number of test cases in 7'S (Lines 1-4).

The time for the entire process of generating tests for a project
using ChatGPT is limited to 90 minutes. The duration of the
Developer Testing event of the National Student Contest of
Software Testing is three hours and is consisted of two test
projects. The two test projects are of similar difficulty, so it is
assumed that the time spent by each contestant on each test
project is one and a half hours, i.e., 90 minutes. In order to try
to maintain fairness, the total time for generating tests for a
test project with ChatGPT will be limited to 90 minutes (Line
5).

As widely acknowledged, ChatGPT heavily relies on prompts.
The comprehensiveness and accuracy of a prompt in conveying
task information to ChatGPT will directly impact its oper-
ational efficiency. In this context, we first provide ChatGPT
with a rough prompt, instructing it to generate tests for a given
class. (Include prompt design here) For a particular class, tests
are generated a total of J times. Each generated test case 1'C;
is added to the test suite TS, and the achieved branch coverage
(Covpranch) and mutation score (M S) of the updated TS
are calculated. The process of generating tests for the class
is halted when it is observed that both the branch coverage
(Covpranen) and mutation score (M .S) have ceased to change
(Lines 6-10).



When the Covpranen, and M S of new test cases cease to
change, from the perspective of code coverage, these test cases
can be considered redundant. If the test generation process
continues, it would lead to inefficiencies. Therefore, in such
circumstances, the direct generation of test cases for this class
is halted. Instead, a more detailed and specific prompt is
required for ChatGPT, instructing it to generate test cases for
a particular method within that class (Lines 11-14).

For a method within a class, we generate test cases K times.
Each newly obtained test case 7'C is added to the test
suite 7'S, and the updated T7'S’s Covpranch and MS are
calculated (Lines 15-19). Similar to the previous steps, when it
is observed that the C'ovpranch and M S of TS have ceased to
change, the generation of new tests for that method is halted.
No longer generating redundant test cases is crucial to mitigate
time costs. (Lines 20-22)

At the end of Algorithm 1, we will have the test suite
TS generated by ChatGPT, along with its C'ovyranch and
M S. This will aid us in evaluating ChatGPT’s test-generation
capability.

Algorithm 1 Test Generation with ChatGPT
Input: Project under test P, total time 7'

Output: Test suite 7'S, branch coverage C'ovp,qnch, mutation
score M S

1: initialize test suite TS

2: initialize branch coverage Covy,anch

3: initialize mutation score M S

4: initialize N to the number of TS

5: while 7" < 90 minutes do

6: for class C' in P do

7: for j in J do

8 generate tests 7'C;; for C

9: add T'C; to T'S

10: calculate Covyygnen and MS

11: if Covyrqnen and M S not changed then
12: break

13: end if

14: end for

15: for method M in class C do

16: for k£ in K do

17: generate tests 1'Cy, for M

18: add T'C}, to test suite T'S

19: calculate C'ovpyqnen and M S for T'S
20: if C'ovpraner and M S not changed then
21: break
22: end if
23: end for
24: end for
25: end for

26: end while
27: return 1S, Covpranen, MS
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3.3 Baselines

As mentioned earlier, ChatGPT is considered as an intelligent
test generation technique in this thesis, and in order to compare
the test generation capabilities of ChatGPT, it is necessary to
use advanced Java test generation techniques as baselines. For
this purpose, we choose the traditional test case generation
tools used in Java project testing, Evosuite [4], to generate test
cases for the project under test. Evosuite is an automated test
generation tool for Java. It generates tests as an evolutionary
process using a genetic algorithm that generates a minimal set
of tests for the code under test, accompanied by test assertions
that react to the behavior of the corresponding class under test.
In the National Student Contest of Software Testing, which
provided us with artificial data samples, the scoring criteria
included branch coverage and variance scores. So the contes-
tants have to do their best to improve the branch coverage and
mutation score of the tests within 3 hours during the contest.
Based on this scenario, while generating tests using ChatGPT
and Evosuite, the branch coverage and mutation score also
need to be as high as possible. When generating tests using
Evosuite, we do not limit the classes or methods for which
tests can be generated, nor do we limit the number of tests
that can be generated for each class or method.

4. EXPERIMENT

This section is aimed at conducting a comprehensive evalua-
tion of the capability of GPT in test generation through the
design of a series of experiments. Throughout this process, we
have undertaken a sequence of targeted steps to thoroughly
scrutinize the effectiveness of our approach.

To begin with, we formulate several research questions (RQs)
that guide our assessment outcomes. Subsequently, we intro-
duce the test data, which corresponds to the target projects
used for test generation. Following that, we will outline the
metrics employed to assess the test generation abilities, along
with the details of the experimental settings. Finally, we will
present an evaluation of the experimental results in relation to
the various research questions.

4.1 Research Questions

We formulate the following research questions for this em-

pirical study and attempt to address these questions through

experimentation.

RQ1: Can the tests generated by GPT be directly used for
test execution?

RQ2: How does the effectiveness of test generation by GPT
compare to Evosuite?

RQ3: Has GPT’s test generation capability surpassed that of
highly skilled human testing professionals?

The purpose of RQ1 is to analyze the accuracy of tests gen-

erated by GPT. Undoubtedly, GPT can generate a substantial

number of tests within a short timeframe. However, what is

the usability of these tests? How accurate are these tests? A

higher accuracy of these tests implies that when we obtain

them, they can be more readily utilized for testing, resulting

in lower time and human resource costs for test refinement



efforts. Therefore, we intend to investigate the accuracy of
tests generated by GPT, assessing it from the following two
perspectives:

Evosuite is widely used Java test generation tools in traditional
testing techniques. In RQ2, we will compare ChatGPT with
Evosuite to assess their respective test-generation capabilities.
RQ3 introduces the objective of comparing GPT’s test gen-
eration capability with human effort. Through various exper-
imental metrics, we will compare GPT with human testers
from multiple perspectives, aiming to explore the feasibility
of employing GPT for test generation in the current context.

4.2 Experiment Object

As previously mentioned in 3-A, the test items we have chosen
are shown in Table I. The number of statements (/N os), number
of branches (NoB), cyclomatic complexity (C'C), and number
of mutations (NoM) of these projects are listed in Table 1.

TABLE I
PROJECTS INFORMATION

Project Name NoS NoB CC NoM
Gomoku 298 332 184 365
MTree 547 299 275 398
ITree 522 440 309 496
GSpan 507 246 165 465
CoverTree 580 268 243 421

4.3 Evaluation Metrics

For RQ1, we explore the accuracy of tests generated by GPT,
assessing it from the following two perspectives:

« Syntax Correctness. Syntax correctness refers to whether
the tests generated by GPT adhere to Java’s syntax rules.
For instance, when inputting the generated tests into a Java
development IDE, they should not trigger any red error
prompts at the very least. If the tests contain numerous
syntax errors, human effort and time will be required to
rectify these syntax issues.

« JUnit Passing Rate. We utilized JUnit, a widely-used Java
unit testing framework, for our testing purposes. Similarly,
when using GPT to generate tests, we require GPT to
generate tests using the JUnit testing framework. Conse-
quently, the generated tests need to adhere to the syntax
requirements of the JUnit framework. Additionally, a crucial
component of testing is assertions, which encompass the
actual execution results of the test and the anticipated
outcomes as perceived by the tester. After executing the
tests using JUnit, the framework automatically provides the
execution results of each test, along with the reasons for
Errors or Failures.

For RQ2, we conduct comparisons using the following met-
rics:
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datal =

mTree.add(datal);
The method search(Integer, int) is undefined for the type MTree<Integer>3rch (datal, )es

assertTrue(searchResultl.contains(datal));

Figure 2. An example of syntax error of the test.

o Branch Coverage. The coverage of branches achieved by
the generated tests. We utilize Jacoco to calculate branch
coverage.

o Mutation Score. The mutation score achieved by the gener-
ated tests. We employ Pitest to calculate the mutation score.

In RQ3, we compare GPT and human beings using the same
evaluation metrics as in RQ2.

4.4 Experiment Evaluation

In this subsection, we provide the experimental results de-
signed for each research question and offer answers to each
research question.

4.4.1 RQ1: Can the tests generated by GPT be directly used
for test execution?

TABLE II
CORRECTNESS OF THE GENERATED TESTS

Project Syntax JUnit

Name Correctness(%) Passing Rate(%)
Gomoku 76.92 21.97
MTree 41.67 25.00
ITree 91.87 88.63
GSpan 90.15 78.57
CoverTree 31.92 26.89

As shown in Table II, the correctness of tests generated using
GPT for the five tested projects was assessed. It can be
observed that the syntax correctness of the generated tests
ranged from the highest rate of 90.15% to the lowest rate
of 31.92%. We find that the primary reason for syntax errors
was the invocation of methods that do not exist in the project
under test, as shown in Figure 2. We speculate that this might
be attributed to the influence of the training data on large
language models during the test generation process, leading
to the creation of tests resembling those from other similar
projects.

In addition to syntax errors, concerning JUnit pass rates, the
highest pass rate was 88.63%, while the lowest was 21.97%.
The primary reason for test failures was the occurrence of
assertion failures.

Answer to RQ1: The syntax correctness and JUnit pass rates
of tests generated by GPT for the tested projects exhibited
a wide range of variability. These rates tended to be lower
when the project had complex call relationships.




TABLE III
EFFECTIVENESS OF CHATGPT, EVOSUITE AND MANUAL TESTERS

) ChatGPT Evosuite Manual Testers
;r;fec ' Branch Mutation Branch Mutation Branch Mutation
Coverage(%) Score Coverage(%) Score Coverage(%) Score
Gomoku 62.50 36.00 64.80 30.00 45.57 21.64
MTree 39.40 25.62 56.93 26.00 39.80 30.85
ITree 33.20 30.00 66.10 61.00 30.90 20.91
Gspan 46.80 30.00 60.95 42.00 47.20 30.40
CoverTree 53.10 19.00 67.5 52.00 65.83 27.75

ng> linkedList0 = LinkedList<

List< > liste = .getString(0, 0);

linkedListB.addAll(tCollectib 7 i

=) liste);
[1 stringAr
stringArray@[0]
linkedList0.add
stringArray@[1]

.checkString(linkedList®, stringArrayo);

yo

Figure 3. An example of a poorly readable test generated by Evosuite

4.4.2 RQ2:How does the effectiveness of test generation by
GPT compare to Evosuite?

In the first four columns of Table III, we recorded the test
generation efficiency of ChatGPT and Evosuite and conducted
a comparison. Evosuite, a relatively mature tool in the Java test
generation domain, achieved code branch coverage of 64.80%,
39.80%, 66.10%, 47.20%, and 67.50% in the five tested
projects and obtained mutation scores of 30.00, 26.00, 61.00,
42.00, and 52.00, respectively. According to the data in the
table, we can observe that in the Gomoku, Mtree, and Gspan
projects, ChatGPT’s branch coverage is similar to Evosuite,
while in the other two projects, ChatGPT’s disadvantages are
more pronounced. In the mutation analysis results, in Gomoku
and MTree, ChatGPT’s mutation scores closely approached or
even exceeded Evosuite. However, in the other three projects,
ChatGPT’s mutation scores were only 30.00, 30.00, and 19.00,
significantly lower than Evosuite.

At the same time, we observed that ChatGPT-generated tests
exhibit higher readability. In the pursuit of achieving higher
coverage, Evosuite-generated test data often include strings
without real meaning, as illustrated in Figure 3. This can
make it challenging for individuals to comprehend the test
code when reading it. In contrast, ChatGPT-generated test data
are typically more relevant to the tested methods, and they
may include annotations, as shown in Figure 4, explaining
the meaning of certain parts of the test code. These factors
undoubtedly contribute to significantly improved readability.

>();

]
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boardField = ss5.getDeclaredField("t

boardField.setAccessible(true);

1t[1[]1 boardvalue = ( [][]1'boardField,get( )

Figure 4. An example of a highly readable test generated by ChatGPT

Answer to RQ2: Compared to Evosuite, the tests generated
by ChatGPT did not exhibit a significant advantage in muta-
tion analysis. Among the test projects under test, ChatGPT
was only able to closely approach or surpass Evosuite in
two of the projects. In the other three projects, ChatGPT’s
disadvantages were more pronounced. In contrast, tests
generated by ChatGPT are much more readable and highly
understandable.

4.43 RQ3: Has the capability of GPT of test generation
surpassed that of highly skilled human testing profes-
sionals?

Comparing the testing capabilities of ChatGPT with those of
human testers is an intriguing topic. We conducted a compar-
ison by using test cases designed by numerous real human
testers and comparing them with the test cases generated by
ChatGPT. The data is recorded in the fifth and sixth columns
of Table III.

Based on the data in Table III, human testing is less efficient
compared to Evosuite. However, when comparing human test-
ing efficiency with ChatGPT, the difference is not particularly
pronounced in Mtree, ITree, and Gspan. In Gomoku, ChatGPT
has a significant advantage, while in CoverTree, human testing
is more effective.

Answer to RQ3: Compared to manual testing, the difference
in the effectiveness of tests generated by ChatGPT is not
significantly large. We believe that to some extent, ChatGPT
can replace a portion of manual testing work.




5. THREATS TO VALIDITY

In the process of designing prompts, since we didn’t focus
extensively on the field of prompt engineering, we chose a
prompt that has proven effective in practical applications. We
used this prompt for generating tests in all the tested projects.
We must acknowledge that if a better-designed prompt were
available, the tests generated by ChatGPT might have been
more effective than our current results. On the other hand,
ChatGPT exhibits randomness in actual usage, meaning that
the results can vary between different runs. To mitigate this
randomness, we conducted 5 repetitions of experiments for
each tested project to minimize the impact of variability.
Furthermore, when using Evosuite to generate tests, we em-
ployed default settings for parameters such as the number of
processor cores and memory in the command. It is possible
that altering these parameters and conducting multiple test
generations could lead to better test outcomes with Evosuite.
In the comparison of test effectiveness, we relied on two
metrics: branch coverage and mutation testing score. We did
not compare the number of bugs identified by tests generated
through different methods because bug identification involves
a significant workload. Additionally, we believe that branch
coverage and mutation testing scores, to some extent, already
reflect test effectiveness. In future work, we will consider
evaluating ChatGPT’s ability to discover bugs.

6. CONCLUSION

In this paper, we conducted experiments to explore ChatGPT’s
capabilities in test generation. For comparison, we used the
commonly used Java test generation tool, Evosuite, and man-
ual testing. Based on the final experimental results, we found
that there is still a significant gap between ChatGPT and
Evosuite in terms of branch coverage and mutation test scores.
However, the gap between ChatGPT and manual testing is
not as significant, and in some tested projects, ChatGPT
even has certain advantages. Furthermore, the tests generated
by ChatGPT exhibit high readability, making them easy to
understand. These tests also include annotations in the test
code, facilitating the understanding of the purpose of code
segments. We believe that ChatGPT is better suited to serve
as a testing assistant, helping people understand the tested code
and providing new testing ideas.
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